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Abstract How does the information of spatiotemporal

sequence stemming from the hippocampal CA3 area affect

the postsynaptic membrane potentials of the hippocampal

CA1 neurons? In a recent study, we observed hierarchical

clusters of the distribution of membrane potentials of CA1

neurons, arranged according to the history of input

sequences (Fukushima et al Cogn Neurodyn 1(4):305–316,

2007). In the present paper, we deal with the dynamical

mechanism generating such a hierarchical distribution. The

recording data were investigated using return map analysis.

We also deal with a collective behavior at population level,

using a reconstructed multi-cell recording data set. At both

individual cell and population levels, a return map of the

response sequence of CA1 pyramidal cells was well

approximated by a set of contractive affine transformations,

where the transformations represent self-organized rules by

which the input pattern sequences are encoded. These

findings provide direct evidence that the information of

temporal sequences generated in CA3 can be self-similarly

represented in the membrane potentials of CA1 pyramidal

cells.

Keywords Hippocampus � Patch-clamp recording �
Cantor coding � Iterated function systems (IFS) �
History-dependent neural representation

Introduction

Clinical studies (Scoville and Milner 1957; Zola-Morgan

et al. 1986), have established that the hippocampus is a

necessary organ for the formation of episodic and semantic

memories, particularly episodic memory. The hippocampus

receives all kinds of sensory information via the entorhinal

cortex. One of the main components of the hippocampus,

CA3, is considered to function as a network for autoasso-

ciative memories via the framework of attractor dynamics,

where memories can be stably stored as corresponding

neuronal patterns and can be retrieved by partial cues (Marr

1971; McNaughton and Morris 1987; Treves and Rolls

1994). These theoretical predictions were partially verified

by experimental studies (Nakazawa et al. 2002; Wills et al.

2005). Moreover, a hypothesis has been proposed that a

temporary instability is a key to regeneration of episodic

events (Tsuda 2001; Tsuda and Kuroda 2001, 2004). On

the other hand, the pyramidal cells have less recurrent

connections in CA1 than CA3. What is the difference in

function of CA3 and CA1? (Treves 2004).

Some studies indicate that CA1 appears to be involved

more in the processing of temporal information than CA3

(see a review by Kesner et al. 2004). Although the main

interests of early studies of the hippocampus of behaving

rodents was spatial memory and place-dependent neuronal

activities (O’Keefe and Dostrovsky 1971), there recently

has been growing interest in their episodic dependencies

(Wood et al. 2000; Frank et al. 2000; Ferbinteanu and

Shapiro 2003; Takahashi et al. 2009). Several model
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studies have been proposed for sequence learning and

recall of the sequence with place cells in CA3 (Wallenstein

and Hasselmo 1997; Levy 1996; Yamaguchi 2003), and the

possibility of sequence-dependent firing in CA1 (Hasselmo

and Eichenbaum 2005; Yoshida and Hayashi 2007).

Moreover, a learning rule depending on spatial and tem-

poral correlation of inputs in CA1 has been proposed based

on in vitro studies (Tsukada et al. 1996; Tsukada and Pan

2005; Tsukada et al. 2007). An understanding of how the

information of spatiotemporal sequence generated in CA3

is represented in CA1 would provide important insights

into a computational role of CA1. We have also proposed a

scheme for encoding the temporal sequence of events in

CA1, which we refer to as ‘‘Cantor coding’’ (Tsuda and

Kuroda 2001; Siegelmann and Sontag 1994), and have

discussed its significance for the formation of episodic

memory in the hippocampus-cortex system (Tsuda 2001;

Tsuda and Kuroda 2004). Cantor coding enables the tem-

poral pattern sequences generated in CA3 to be represented

hierarchically in fractal subsets in state space of CA1.

Fukushima et al. (2007) conducted experiments to verify

the presence of Cantor coding in rat hippocampal slices and

found clusters of membrane potentials corresponding to

different temporal sequences of inputs. They also verified

the hierarchies of such clusters up to depth two or three of

the sequences. However, this finding does not necessarily

imply the fractality of the membrane potentials, namely

Cantor coding. Other data analyses are necessary to show

more explicitly the presence of Cantor coding. The aim of

the present paper is to obtain direct evidence of Cantor

coding by performing new analyses of the experimental

data. Before describing the data analyses conducted, we

will briefly explain iterated function systems (IFSs) which

play a key role in the analyses.

Iterated function systems

Here we briefly explain the mechanism of Cantor coding

by using a simple mathematical model, called iterated

function systems (IFSs) (Hutchinson 1981; Barnsley 1988).

IFSs provide a deterministic framework for generating self-

similar fractal patterns as their attractors, and have been

applied to many systems (see, for instance, Pollack 1991;

Bressloff and Stark 1992; Kolen 1994; Yamamoto and

Gohara 2000; Kaneko 2005).

An IFS is defined as a finite set of contractive trans-

formations on a complete metric space, and is often called

a hyperbolic IFS. Here, a transformation f : X ? X on a

metric space (X, d) is called contractive if there is a con-

stant 0 B s \ 1 such that d(f(x), f(y)) B s � d(x, y) for all

x, y [ X, where d : X � X ! R is a metric on the space X.

Figure 1a shows an example of a two-dimensional IFS

consisting of three contractive transformations on R
2: The

attractor of this IFS is a Cantor set named a ‘‘Sierpinski

triangle’’ (Fig. 1c). The attractor is obtained as follows.

Take any closed bounded nonempty subset B in R
2: First,

by each of three transformations Fi (i = 1, 2, 3), B is

contracted and moved to a respective position. For these

three images, take their union to obtain images of the first

transformations (Fig. 1a). Repeat this process. For any nth

images of the three transformations, their union is

also transformed, and we have n ? 1st images (Fig. 1b).

In each step of such procedures, each component of the

images is naturally associated with a sequence of trans-

formations applied to make such a component. The

attractor A is produced by an infinite sequence of this pro-

cedure (Fig. 1c). The elements of the attractor are hierar-

chically clustered in a self-similar manner according to the

similarity of sequences of the applied transformations.

It should be noted that the attractor is composed of three

images of itself by these three transformations. This self-

referential structure permits the definition of a continuous

mapping from the space of sequence consisting of three

transformations onto the attractor, provided an appropriate

metric in such a sequence space. Moreover, if the trans-

formations of IFS satisfy the non-overlapping condition
T

i FiðAÞ ¼ ; (see also Fig. 1a), the mapping becomes a

homeomorphism, and the obtained attractor is a Cantor set.

Now, each element of the Cantor set is associated with a

sequence of the applied transformations, and the distance

between different sequences of applied transformations can

be measured by the Euclidean distance between corre-

sponding two elements in the Cantor set. Thus, the Cantor

set can be regarded as a spatial code table for sequences of

applied transformations (Fig. 1c). Here, the history in

sequence of applied transformations is retrospectively

represented by the spatial hierarchy of the Cantor set; each

cluster of the Cantor set is associated with similar

sequences of applied transformations which have common

resent history with a length that is equivalent to the depth

of the cluster in the spatial hierarchy. Figure 1d shows two

examples of one-dimensional IFSs consisting of three

contractive affine transformations on variables x and y,

respectively. Here, an affine transformation on R is con-

tractive when the absolute value of its slope is smaller than

one. A two-dimensional IFS as a pair of them has the same

attractor A described above. This example shows that a

non-overlapping condition can be satisfied on a two-

dimensional IFS as a pair, albeit the condition can not be

satisfied on each one-dimensional IFS.

IFSs are naturally realized as input-driven contractive

systems, an example of which is schematically shown in

Fig. 2. In this formulation, a transformation, which repre-

sents a rule of state transition, is selected by each input, and

thus a sequence of inputs generates a sequence of rules.
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Consequently, the orbit in the system is trapped on the

fractal attractor of the underlying IFS. Hereafter, the input-

driven contractive systems are also referred to as input-

driven IFSs. As underlying IFS let us take two-dimensional

IFS described above (Fig. 1a). Then, after the system is

received an input sequence, the states of the system would

be restricted on the Sierpinski triangle (Fig. 2b; see also

Fig. 1c). Now this Cantor set provides a spatial code table

for input sequence so that the states of the system are

hierarchically clustered in a self-similar manner according

to the similarity of the input histories. For example, the

code [312] representing cluster enclosed by a open circle in

Fig. 2b corresponds to the input sequence patterns 3, 1 and

2, where 3 is the most recent pattern in the input.

In real circumstances including brain, a system is con-

taminated by various kinds of noise. In input-driven IFSs,

(a)

(b)

(d)

(c)

Fig. 1 Iterated Function

System (IFS) and its attractor.

a An example of two

dimensional IFS:

ðR2; F1;F2;F3Þ: It consists of

three contractive

transformations on R
2: Its

attractor is given as A ¼
limn!1

S
i1i2 ���in Fi1 Fi2 � � �Fin

ðBÞ;
where B is any closed bounded

subset of R2: This IFS satisfies a

non-overlapping condition:T
iFiðAÞ ¼ ;. b Second and

third images of the IFS. The

area of each image becomes

smaller and smaller. c The

attractor A of the IFS. The

attractor is a Cantor set, referred

to as a ‘‘Sierpinski triangle’’.

The labels of the first and the

second images,

FiðAÞ and Fi1 Fi2 ðAÞ are shown

in square brackets as [i] and

[i1i2], respectively. d Two

examples of one-dimensional

IFSs are ðR; f1; f2; f3Þ and

ðR; g1; g2; g3Þ: They consist of

three affine transformations on

variables x and y, respectively.

A two-dimensional

IFSðR2; ðfi; giÞ; i ¼ 1; 2; 3Þ as a

pair of them has the same

attractor A.
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however, a perturbation by adding noise to the state is

rapidly reduced by their contractive dynamics. Thus, even

if such a perturbation occurs at each instant of time, the

perturbed orbit still follows the original orbit of the

noiseless system within a constant distance determined by

the contractive ratio. Hence, although the fine structure of

the attractor would be disturbed in such a noisy environ-

ment, such disturbance remains at finer scales. For further

discussions about noise effect, see, for instance, Tsuda and

Yamaguchi (1998), Tsuda (2001).

A dynamical mechanism of Cantor coding

We have previously proposed the Cantor coding hypothesis

for the hippocampal CA1 area through the studies of hip-

pocampus models. First, we constructed a skeleton model for

CA3 as well as for CA1 with unidirectional excitatory cou-

plings from CA3 to CA1 and disinhibitory couplings from

the septum to both CA3 and CA1 (Tsuda and Kuroda 2001).

Using this model, we demonstrated the Cantor coding in the

state space of the CA1 network consisting of neuronal pat-

terns. Second, we constructed a CA1 network model con-

sisting of two compartment model neurons, and investigated

the possibilities of Cantor coding when the network receives

spatiotemporal input sequences (Yamaguti et al. 2009). We

also observed Cantor coding in the space of firing rates and

clarified the biological conditions of Cantor coding.

Using the concepts of IFS described above, our Cantor

coding hypothesis for CA1 can be stated as follows. When

CA1 receives a temporal input sequence consisting of a

finite set of input patterns, contractive response-rules cor-

responding to the input patterns are self-organized. This is

an emergent property of the network. The self-organized

rule generates a Cantor set in the space of membrane

potentials, where the input histories are encoded.

Materials and methods

How can we verify the hypothesis of Cantor coding in

CA1? In Fukushima et al. (2007), we conducted experi-

ments to clarify how the information of spatiotemporal

sequence of the hippocampal CA3 area affects the post-

synaptic membrane potentials of individual hippocampal

CA1 pyramidal cells. Sequential electrical stimulations

consisting of four distinct spatial patterns were randomly

applied to the Schaffer collaterals with gamma frequency,

and the post-synaptic membrane potentials were recorded

using patch-clamp techniques. We observed that the

distributions of the membrane potentials were hierarchi-

cally clustered according to the histories of input

sequences up to depth two or three. However, the finding

of such hierarchical clusters is still only indirect evidence

of the presence of Cantor sets, because these sets are

essentially infinite objects; observed sets are finite. A

direct evidence of Cantor sets may be obtained by

showing the existence of emergent rules such as IFS.

This is what we wanted to establish in the present paper.

From this point of view, in the present study we exam-

ined the experimental data, and adopted a different

method of data analysis. The electrophysiological method

used here was similar to that used in a previous study

(Fukushima et al. 2007), where only the stimulus protocol

was replaced by a new one.

Procedure of the experiment

The general surgical procedures, electrode preparation

and electrical stimulation method employed in this study

are described in detail in our previous paper (Fukushima

et al. 2007). All experimental protocols were approved

by Tamagawa University Animal Care and Use

Committee.

(a) (b)

Fig. 2 Input-driven IFS and its attractor. a Schematic diagram of

input-driven IFS. Assume the number of kinds of input to be finite

ði ¼ 1; . . .;KÞ; and each input i induces an application of a contractive

transformation Fi on the state space X: Then, a sequence of inputs

{in} induces an application of a sequence of transformations fFing:
The possible distribution of states is restricted to the attractor of the

underlying IFSðX; F1; . . .;FKÞ: b An example of attractor of an input-

driven IFS. Suppose the number of kinds of input is three (i = 1, 2,

3), each Fi is identical to either one in Fig. 1a, and the state space

X ¼ R
2: Its attractor is the Cantor set shown in Fig. 1c. See further

explanation in the text.
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Preparations and patch-clamp recordings

Whole cell patch-clamp recordings were conducted in the

soma of pyramidal cells in the rat hippocampal CA1 area

(Fig. 3a). See Appendix 1 for the detailed explanations.

Brain slices of six Wister rats (4–5 weeks old) were

made according to the standard procedure reported by

Tsukada et al. (2005). Each slice was placed in the

recording chamber and neurons were visualized with an

infrared differential interference contrast (IR-DIC) camera.

The internal solution of the recording electrode was pre-

pared following the method of Magee (2001). The calcium

chelator EGTA was used at a high concentration to block

long-term potentiation. Whole cell patch-clamp recording

was obtained from the soma of a pyramidal cell in CA1

using an electrical amplifier. Signals low-pass filtered at 10

kHz were digitally sampled at 25 kHz, and stored on a

computer hard disk.

Spatial stimuli

In order to generate spatiotemporal inputs to the pyramidal

cell in CA1, two stimulus electrodes were set to the

Schaffer collaterals, in sites proximal and distal to the

soma, respectively (Fig. 3a). Duration of the stimulus

current pulses was 200 ls, and strength was adjusted to the

peak amplitude of evoked EPSP to 1–13 mV below firing

threshold. The two stimulus electrodes were set without

overlap of the stimulating pathways between them, which

was checked in paired-pulse facilitation (50 ms interval).

Four spatial input patterns of electrical stimulation were

prepared and symbolized from 1 to 4 as follows: no elec-

trical stimulation (‘‘1’’), electrical stimulation through an

electrode placed in a distal site (‘‘2’’), in a proximal site

(‘‘3’’) and in both sites (‘‘4’’).

Here, we should remark on the case of no electrical

stimulation, 1, which was also regarded as a spatial input

pattern. In this experiment, we prepared the spatial input

patterns as imitations of actual spatial input from CA3 to

CA1, although these were very restricted ones due to

experimental constraints. Actual inputs could include the

possibility of a case of no input to the observed cells. For

this reason we include the pattern 1 as a spatial input from

CA3 to CA1.

Stimulus protocol

The following new stimulus protocol was adopted. For each

cell, a recording session consisted of 122 stimulus periods

with an intervening rest period of 10 s (Fig. 3a). In a stimulus

period, ten successive inputs were applied with 30 ms

intervals. The input interval of 30 ms was chosen considering

the observations of gamma frequency band in this area

(Csicsvari et al. 2003). Each input pattern was randomly

selected among the four spatial input patterns. The random

input sequence was fixed throughout all recording sessions.

The stimulus protocol adopted in this study enabled us to

obtain many stable responses and to provide strong stimu-

lation, compared with the stimulus protocol adopted in the

previous experiment (Fukushima et al. 2007).

Data analysis procedure

In this study, we recorded from eleven cells in six slices. One

cell was excluded from analysis because the cell exceeded a

criterion for variation of resting potential during the recording

session. The ten other cells were classified into two groups,

sub-threshold and supra-threshold, according to whether or

not the continual stimulations induced spikes. The sub-

threshold group consisted of five cells in four slices (cell 1, …,

cell 5) whose membrane potentials stayed below the firing

threshold throughout their recording sessions. The supra-

threshold group consisted of five cells in three slices (cell

6, …, cell 10) in which spikes were elicited in each stimulus

period. For each stimulus-period, the baseline membrane

potential was determined as mean amplitude during 2 s before

the stimulus period (-70.1 ± 3.0 mV (mean ± SEM),

n = 10), where the average standard deviation for each cell

was 1.1 (n = 122)). Hereafter, we express membrane poten-

tial as the difference between the measured voltage and the

baseline membrane potential at each stimulus period.

Definition of response of an individual neuron

It is possible to take several choices as ‘‘responses’’, x(n),

to nth input. Let Dt be the time interval up to the mea-

surement of responses after a stimulation. In this study, we

estimated the following quantities: Vlast, VDt and Vave. A

response at Dt to nth input was defined as the membrane

potential at a fixed elapsed time Dt after the input, which is

denoted by VDt(n) (Fig. 3b). In particular, Vlast(n) denotes

the value at Dt = 28 ms taken as the timing just before the

next input. We also considered an averaged membrane

potential of VDt(n) over Dt = 4–30 ms, which is denoted by

Vave(n). In the calculation of this quantity, spikes were

removed from the time course of membrane potential.

Responses for analysis were gathered from all stimulus

periods for each cell using the same procedure.

Return map analysis of time series of responses

Return map analysis was used to examine the dynamics

underlying the generation of responses to a spatiotemporal

input sequence. For a response sequence {x(n)}n, a return

map was generated by plotting each response x(n) against

the previous response, x(n - 1).
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Fig. 3 Experimental procedure and sample traces. a Schematic

diagram and IR-DIC image of hippocampal slices. Two independent

extracellular electrodes were set onto the Schaffer collaterals, at sites

proximal and distal to the soma, respectively. For each cell, a

recording session consisted of stimulus periods (300 ms) with 10 s

rest periods. In a stimulus period, ten successive spatial input patterns

were applied with 30 ms intervals. Each input pattern was randomly

selected among four spatial input patterns of electrical stimulations:

both electrodes (‘‘4’’ (magenta)), a electrode placed in the distal site

(‘‘2’’ (green)) or the proximal site (‘‘3’’ (blue)), and neither electrode

placed (‘‘1’’ (red)). In the figures in this article, these input patterns

are color-coded in the same way throughout. The right bottom image

is an IR-DIC image of the hippocampal CA1 area. The white arrow

indicates the recording electrode. The lower two electrodes are

stimulus electrodes. b Sample traces of membrane potentials and the

neuronal responses in a stimulus period. The upper two traces show

the timing of electrical stimulation and the lower two samples show

the timing of responsive membrane potentials recorded from cells in

the sub-threshold group (upper) and the supra-threshold group

(lower), both smoothed using a median filter to remove electrical

stimulus artifacts. The membrane potentials are color-coded accord-

ing to the kinds of their most recent input patterns.
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Conditional distribution of responses for an input sequence

Responses were associated with not only (spatial) input

patterns, but also their temporal sequences. We denote an

input pattern sequence of k length by i1���ik from the most

recent input i1 to the kth most recent input ik. A notation

[i1���ik] is used for a conditional distribution of responses to

the input pattern sequence of k length i1���ik, that is,

½i1 � � � ik� ¼ xðnÞ; SðnÞ ¼ i1; . . .; Sðn� k þ 1Þ ¼ ikf g; where

S(n) denotes an nth input pattern.

Construction of the virtual population response

Virtual multi-cell recording data were reconstructed from

the observed five single-cell recording data sets in the case

of the sub-threshold group. Considering the fact that the

same random input sequence was used throughout all of the

recording sessions, the population response was con-

structed by expressing a population state as a population

vector XðnÞ ¼ ðxcell1; . . .; xcell5ÞðnÞ; using five single-cell

recording data sets obtained from four different slices.

Similarly in the case of individual cell recording, we also

studied their return maps, conditional distributions and

spatial clustering indexes described below.

Statistical analysis

The correlation coefficient was calculated by Pearson’s

method. To evaluate the significance of differences among

conditional distributions of a variable such as response of

an individual cell and peak amplitude of EPSPs, where the

distributions were conditioned by input patterns, the

Kruskal-Wallis test with the Bonferroni-Dunn (BD) mul-

tiple comparison test (Kruskal and Wallis 1952; Dunn

1964) was used. To evaluate whether the conditional dis-

tributions f½i1 � � � ik�; ik ¼ 1; . . .; 4g had the same order as

f½i�; i ¼ 1; . . .; 4g when an individual cell responds to input

pattern sequences with k(C2) length sharing a common

recent history with (k - 1) length, the Jonckheere-Terpstra

(JT) test with the BD test (Jonckheere 1954; Terpstra 1952)

was used. See Appendix 2 for detailed explanations. The

JT test with the BD test was also used to evaluate whether

conditional distributions of a fitting parameter (explained

in ‘‘Simulated time course of somatic membrane potential

using the leaky-integrator model with synaptic inputs’’)

had the same order as that for response. p values of less

than 0.05 were considered significant.

Spatial clustering index

To quantify the degree of coding error for input pattern

sequences, the spatial clustering index was introduced

(Fukushima et al. 2007). The index was calculated for each

input pattern sequence of k length by conditioning on input

pattern sequences of (k - 1) length. Thus, at each length of

input pattern sequence, the spatial clustering index indi-

cates the degree of code overlap.

First, we provide a criterion to judge whether a

responsive membrane potential correctly represents the

sequence of inputs, using a simple classifier as follows.

Here, z is a specific response of an individual cell and a

population to one input pattern sequence of k length i1���ik.
The response z is correctly decoded up to depth k if the

distance between z and ½i1 � � � ik� n fzg; which is a distri-

bution obtained by deleting z from the conditional distri-

bution [i1���ik], is smaller than the distances between z and

three other conditional distributions [i1���ik
0
] (ik

0
= ik)

sharing a common recent history with (k - 1) length.

Second, for the responses to the four input pattern

sequences of k length sharing a common recent history

with (k - 1) length i1���ik-1, the number of decoding fail-

ures is counted, whose error rate is denoted by ek(i1���ik-1)

for k C 2 and e1 for k = 1.

Finally, the spatial clustering index at depth k, denoted by

C(k), is defined by an averaged value of the error rates over

common recent histories with (k - 1) length: CðkÞ ¼
ð1=4k�1Þ

P
i1���ik�1

ekði1 � � � ik�1Þ=0:75 for k C 2 and e1/0.75

for k = 1, where the denominator 0.75 is the compensation

factor of chance level. The value C(k) ranges from 0 to 4/3.

Here, the value 0 denotes the perfect level and the value 1

denotes the chance level. In the present study, the clustering

index was calculated up to depth three. For the distance

between response and distribution, we used Mahalanobis

distance between the response z and the mean l of the dis-

tribution, which is defined by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðz� lÞR�1ðz� lÞ

q
; where

R is a covariance matrix of the distribution which is simply

the variance of the distribution if the response is from an

individual cell. Another choice of the distance is possible, for

example, Euclidean distance between the response and the

mean of the distribution, but our results did not depend

qualitatively on the choice made.

Results

When the cells were in resting state, peak amplitudes of the

evoked EPSPs were largest for input pattern 4, followed by

3 and 2 (4/5 cells in the sub-threshold group and 5/5 cells in

the supra-threshold group; p \ 0.05, no significant differ-

ence between 4 and 3 in two cells in the supra-threshold

group) and 4 and 2 were largest followed by 3 (1/5 cells in

the sub-threshold group; p \ 0.05, no significant difference

between 4 and 2).

The peak amplitudes were 7.3 ± 1.6, 5.8 ± 1.2 and

2.2 ± 1.0 mV (mean ± SEM, n = 5) in the sub-threshold
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group, and 11.0 ± 3.5, 9.5 ± 2.5 and 3.4 ± 2.0 mV

(n = 5) in the supra-threshold group, respectively. The

correlation coefficient between the two kinds of responses

Vlast and Vave was very large (0.98 ± 0.01 (mean ± SD),

n = 10). Therefore, we investigate here Vlast and VDt.

Evidence of IFS at individual cell level

Figure 4a and b show the return maps of response sequence

{Vlast} of cells in the sub-threshold group. The graph of the

return map for each cell consists of four ‘‘branches’’ cor-

responding to four different input patterns: fðVlastðnÞ;
Vlastðnþ 1ÞÞ; sðnþ 1Þ ¼ igði ¼ 1; . . .; 4Þ: These branches

denote the self-organized transition rules of responses

according to input patterns.

The order of medians for conditional distributions of

responses to the four input patterns was [1] \ [2] \ [3] \
[4] (4/5 cells) or [1] \ [3] \ [2] = [4] (1/5 cell)

(p \ 0.05). The lower two branches have large correlation

coefficients (0.83 ± 0.07 (mean ± SD), n = 10) between

successive responses, Vlast(n) and Vlast(n ? 1), which

indicates a linear functional dependence between succes-

sive responses in these branches. Although the correlation

coefficients of the upper two branches were not so high

(0.55 ± 0.10 (mean ± SD), n = 10), it is likely that their

‘‘major’’ parts have a linear functional relationship. We

will investigate this issue later in the paper from another

viewpoint (‘‘Simulated time course of somatic membrane

potential using the leaky-integrator model with synaptic

inputs’’). Line-fitting for each branch was performed using

major axis regression (Fig. 4d). All slopes of fitting lines

for the branches were smaller than 1 (0.36 ± 0.10 (mean ±

SD), n = 20), indicating the presence of contractive affine

transformations.

We also investigated the supra-threshold group of cells,

which output spikes in each stimulus period. The number

of spikes in an input interval was less than three, and in

most cases only a single spike was observed. The number

of spikes in a stimulus period was 2.0 ± 0.7 (mean ±

SEM, n = 5), where the average standard deviation for

each cell was 1.6 (n = 122). The spikes appeared after

input 3 and 4 in all cells, except for cell 10 in which spikes

were also observed after input 2 as well as 3 and 4. Despite

the presence of these spikes, similar results for the return

map were also obtained in this group, although the orders

of medians for conditional distributions of responses

showed less variety than those in the sub-threshold group :

[1] \ [2] \ [3] \ [4] (3/5 cells) and [1] \ [2] \ [3] = [4]

(2/5 cells) (p \ 0.05). Figure 5a and b show the return

maps of the response sequence {Vlast} of cells in the supra-

threshold group. The correlation coefficients of the lower

two branches and the upper two branches were 0.89 ± 0.06

(n = 10) and 0.56 ± 0.15 (n = 10), respectively. Again,

all slopes of fitting lines for the branches were smaller than

1 (0.35 ± 0.15 (n = 20)). This indicates the presence of

contractive affine transformations in the supra-threshold

group too.

It should be noted that for {Vave}, the correlation

coefficients of their branches were larger in both the sub-

and supra-threshold groups (0.89 ± 0.04 (lower two

branches (n = 20)); 0.70 ± 0.12 (upper two branches

(n = 20))).

The fact that a major part of each branch is approxi-

mated by the contractive affine transformation enables us

to conclude that the conditional distributions of responses

to input sequences can be hierarchically clustered in a self-

similar manner according to the similarity of the input

pattern sequences. Actually, as shown in Fig. 6, the con-

ditional distributions of Vlast were hierarchically clustered

in a self-similar manner up to depth two or three of input

pattern sequences, although in some cases the hierarchical

clustering with depth three becomes unclear. These results

are consistent with those reported in Fukushima et al.

(2007).

To measure the performance of the coding of input

pattern sequences, the spatial clustering index was calcu-

lated. Figure 7 shows the change of indices for Dt up to

depth three for responses {VDt}, where Dt is elapsed time

from the most recent input (4 B Dt B 28 ms). At depth

one, the index decreased and reached a minimum value at

Dt* (19.6 ± 6.4 ms (mean ± SD), n = 10) as the elapsed

time Dt increased. At depth two, the index monotonically

increased as Dt increased, and was far from the chance

level. At depth three, the index had a large deviation for the

input pattern sequences and eventually achieved the chance

level for some input pattern sequences.

Evidence of IFS at population level

At the individual cell level, the performance of the coding

of input pattern sequences is successful but still somewhat

poor. In particular, the history-coding at depth three of

input sequences was still vague. However, because many

neurons present in CA1, it is rather natural to think of the

population level response, which can be described in high-

dimensional state space. In ‘‘Iterated Function Systems’’,

we described one two-dimensional IFS and two one-

dimensional IFSs, with the latter viewed as a two-dimen-

sional IFS as a pair (Fig. 1a and d). The two-dimensional

IFS has a Cantor set as its attractor. When this type of IFS

is realized as an input-driven IFS, input histories are

completely encoded by the subsets of a Cantor set in a self-

similar manner. In other words, its performance for the

sequence coding is perfect level. On the other hand, two

one-dimensional IFSs, in general, achieves only low per-

formance for the sequence-coding, because each IFS may
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not satisfy the non-overlapping condition. However, a pair

of them can achieve high performance for the coding as a

two-dimensional IFS. This is because they can play a

mutually complementary role of distinguishing inputs. For

instance, distinguishing between inputs 1 and 3, and also

between input 2 and the rest. Thus, the input sequence can
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Fig. 4 Return maps of response sequence {Vlast} of each cell in the

sub-threshold group. a A return map of response sequence {Vlast} of

cell 1. The return map consists of four parts, called branches,

corresponding to four n ? 1st input patterns. The colors of the points

indicate the kinds of n ? 1st input patterns. Red, green, blue and
magenta colors indicate the input pattern 1, 2, 3 and 4, respectively.

These four branches are separately shown in the four right-hand side

panels. Superimposed on the branches are the fitting lines, which are

produced by the use of major axis regression for the respective

branches, and the diagonal line Vlast(n ? 1) = Vlast(n). b Return

maps of response sequence {Vlast} of cell 2–5. c Correlation

coefficient between successive responses corresponding to the points

{(Vlast(n), Vlast(n ? 1))} in each branch for each cell. d Slope of the

fitting line for each branch in each cell. Error bars in (c, d) indicate

95% confident intervals.
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be completely encoded through their cooperation, even if

each IFS individually produces an incomplete code.

The return maps of individual cells in Fig. 4 show such

a possibility. Motivated by these considerations, we

estimated the population behavior using five single-cell

recording data sets in the sub-threshold group.

Figure 8 shows projections of the return maps of the

population response Vlast ¼ ðVcell1
last ; . . .;Vcell5

last Þ; where the
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Fig. 5 Return maps of response sequence {Vlast} of each cell in the

supra-threshold group. a A return map of response sequence {Vlast} of

cell 6. The four branches are separately shown in the four right-hand

side panels, where the points (Vlast(n), Vlast(n ? 1)) such that spikes

occur in the n ? 1st input interval are enclosed by open black circles.

Superimposed on the branches are the fitting lines using major axis

regression and the diagonal line Vlast(n ? 1) = Vlast(n). b Return

maps of response sequence {Vlast} of cell 7–10. c Correlation

coefficient of each branch in each cell. d Slope of the fitting line for

each branch in each cell. Error bars in (c, d) indicate 95% confident

intervals.
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projections are onto the 1st and the 2nd principal compo-

nents (PCs) of the distribution of the population response.

Similarly to the case at the individual cell level, each figure

consists of four branches of return maps corresponding

to four different input patterns. All branches are well

approximated by contractive affine transformations. The

cumulative contribution ratio up to the 2nd PC was 93%

and the return map for the 3rd PC did not have a clear

structure (data not shown). Thus, the transition rules of the

population responses according to the input patterns are

represented by the pair of return maps for the 1st and the

2nd PC.

Figure 9 shows the conditional distributions of the

population response. They show hierarchical clusteriza-

tion in a self-similar manner, according to the similarity

of the input pattern sequences. The degree of overlapping

at population level is much lower than that at individual

cell level.

In Fig. 10, we estimate the difference in the spatial

clustering index between population level and individual

cell level. Coding performance is remarkably improved

at population level. The dependence of the spatial clus-

tering index on the depth of the input sequence and also

on the elapsed time is much improved at population

level.
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Fig. 6 An example of conditional distributions of response Vlast. The

case of cell 1. a Histograms of conditional distribution [i] of response

{Vlast} to each input pattern i. The dot on each abscissa represents the

median of the distribution. b Histograms of conditional distribution

[i1i2] of the response {Vlast} to each input pattern sequence of length

two i1i2. These are color-coded according to input patterns i2. c Two

cases for input pattern sequence of length three i1i2i3. In the case

shown in the upper four histograms, the influence due to the

difference among histories in input sequence partially remains,

whereas such influence almost disappears in the case shown in the

lower four histograms. These are color-coded according to input

patterns i3. * p \ 0.05; Jonckheere-Terpstra test with Bonferroni-

Dunn multiple comparison test.
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Fig. 7 The coding performance of input pattern sequences at

individual cell level. At each elapsed time Dt (4 B D B 28 ms),

spatial clustering indices of the response VDt up to depth three were

calculated. The thick red curve at each depth k = 1, 2, 3 is the index

Ccell 1(k) at depth k of cell 1 in the sub-threshold group. The

pink shaded region at depth k = 2 and 3 is the standard deviation

of normalized error rate ek(i1���ik-1)/0.75 over recent histories with

(k - 1) length. The four thin red curves and five thin blue curves are

indices Ccell j(k) of the remaining four cells ðj ¼ 2; . . .; 5Þ in the sub-

threshold group and the five cells ðj ¼ 6; . . .; 10Þ in the supra-

threshold group, respectively. The dashed line indicates the chance

level.
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Simulated time course of somatic membrane potential

using the leaky-integrator model with synaptic inputs

The use of the return map adopted in the present paper

provides a new method for data analysis. If the membrane

potentials of neurons were continuously observed as

responses to input pattern sequences, neither Cantor sets

nor affine transformations could be directly observed. The

point is that the data were transformed for each pattern

element of the input sequence. In this respect, the present

data analysis is a discrete one. On the contrary, in this

section we try to interpret the results of the return map

analysis in terms of a continuous time evolution of somatic

membrane potentials when temporal sequences of spatial

patterns are input. For this purpose, we derived a time

course discretized during each input interval using the

leaky-integrator model under sub-threshold conditions.

Through the examination of the distribution of the time

courses, we will characterize the fluctuations in the

responses, especially the fluctuation in each branch of the

return maps. The main aim of this section is to provide a

further justification of the approximation of the return maps

by the set of contractive affine transformations obtained in
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sequence fVlastg at population

level. The return map of

population response sequence

fVlastg in the sub-threshold

group was projected on the 1st

and the 2nd principal

components (PCs).

Superimposed on the branches

are the fitting lines using major
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components of the distribution. The colors of points indicate the kinds

of the most recent input patterns. The location and shape of the

conditional distribution [i1i2] for each input pattern sequence of length

two i1i2 are depicted by an ellipsoid at the 63 percent probability level

under an assumption that the population follows two-dimensional

normal distributions.
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Fig. 10 Comparison of the coding performance at individual cell and

population levels. The upper white curves indicate averaged spatial

clustering indices of response VDt over the cells in the sub-threshold

group,
P

j¼1;...;5 CcelljðkÞ=5: The shaded region shows the standard

error (n = 5). The thick red curves are spatial clustering indices for

population response VDt ¼ ðVcell1
Dt ; . . .;Vcell5

Dt Þ: The pink shaded region

at depth k = 2 and 3 is the standard deviation of normalized error rate

ek(i1���ik-1)/0.75 over recent histories with (k - 1) length. The thin

black curves are spatial clustering indices for the population

responses projected on two-dimensional subspace spanned by the

1st and the 2nd principal components of the distributions of

VDt: 4�Dt� 28 ms:
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‘‘Evidence of IFS at individual cell level’’ from another

viewpoint. Here, we briefly describe the leaky-integrator

model with synaptic inputs. See Appendix 3 for the

detailed derivation.

The time course of somatic membrane potential V(Dt) at

elapsed time Dt between the subsequent inputs is given by

the following equation:

VðDtÞ ¼ Vð0Þ expð�Dt=smÞ þ AðDt; sm; ss; qr; dÞ; ð1Þ

where V(0) is somatic membrane potential at Dt = 0, sm is

a decay time constant with which the somatic membrane

potential is leaked, and the second term A including four

parameters represents an effect of the inputs on the somatic

membrane potential at Dt, where the parameters qr, ss and d
are amplitude, a rise and a decay time constant and a

transmission delay, respectively. To Eq. 1 we fitted each

data set of responses {VDt(n) ; 0 B Dt B 30} (S(n) = 2, 3

and 4) of the cells in the sub-threshold group. Thus,

through Eq. 1, a time course from nth input S(n) to the

subsequent input S(n ? 1) can be specified by a set of four

fitting parameters (sm, ss, qr, d) = (sm, ss, qr, d)(n) and an

initial membrane potential V(0) = V0(n). The shape of the

time course, especially, is specified by the values of the

four parameters. The terms exp(-Dt/sm) and A(Dt; sm, ss,

qr, d) in Eq. 1 are here referred to as intrinsic slope and

intrinsic intercept of the time course at Dt, respectively. In

this formulation, {(V(0), V(30))} for the time course can be

regarded as a point in a branch of the return map for

response sequence {Vlast}.

For all five observed cells in the sub-threshold group and

also for three different input patterns, most of the time

courses passed the fitting criterion (86.5 ± 6.8% (mean ±

SD), n = 15). The resultant fitting parameters sm, ss, qr and

d distributed in a wide range and the distributions depended

on the cells and the input patterns. First, we describe the

common features of the distributions for the observed cells

and for the different input patterns. Each parameter obeys a

skewed and single-peaked distribution, as shown in

Fig. 11a. In some cases, however, there was a second small

peak. Initial membrane potential V(0) possessed a small

correlation coefficient with each parameter (Fig.11c), and

no notable relationship between V(0) and the parameters

was found in scatter diagrams (data not shown). The

existence of large peaks in the distributions and the lack of

dependency on V(0) of the parameters imply that for each

input pattern in each cell there is a V(0)-independent shape
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Fig. 11 The distributions of the values of fitting parameters, and the

dependency between fitting parameters and also between fitting

parameter and initial membrane potential V(0). a The left column

shows histograms of sm, ss and d for input pattern 4 in cell 5. The right

column shows histograms of qr for three input patterns 2, 3 and 4
from below in cell 5. Superimposed on the histograms are the kernel

density estimates with a Gaussian kernel. The colors of histograms

indicate the kinds of input patterns. Green, blue and magenta indicate

patterns 2, 3 and 4, respectively. The dot on each abscissa is the

median of the distribution. b The correlation coefficients between

parameters for input patterns 2, 3 and 4 in each cell jðj ¼ 1; . . .; 5Þ: c
The correlation coefficients between V(0) and a parameter for input

patterns 2, 3 and 4 in each cell jðj ¼ 1; . . .; 5Þ:
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of time course which is determined by typical values of the

four fitting parameters (sm, ss, qr, d). Moreover, the cor-

relation coefficients between the parameters are consistent

in their signs, ? or - (Fig. 11b). Hence, the distributions

of the four fitting parameters are characterized as the fol-

lowing distributions of shapes of time course around a

typical shape: (i) after some delay, the amplitude rapidly

grows and gradually decays, and (ii) without a long pause

the amplitude gradually grows and rapidly decays.

Furthermore, we discuss how the typical time course and

its neighbors appear in (V(0), V(30))-space, i.e. a branch of

the return map for response sequence {Vlast}, for each input

pattern in each cell (Fig. 12). We determined a typical

V(0)-independent time course, using a four-tuple of medi-

ans of the fitting parameters p� ¼ ðs�m; s�s ; q�r ; d�Þ; and also a

set of time courses in its neighborhood, nbd(p*) = {(V(0),

sm, ss, qr, d); (1/sm, 1/ss, qr, d) [ E(p*)}, which is viewed

as the typical time courses derived of the four fitting

parameters in a Mahalanobis ellipsoid E(p*) centered at the

median in the (1/sm, 1/ss, qr, d)-space (Fig. 12a). The

typical V(0)-independent time course corresponds to a line

in (V(0), V(30))-space obtained by a substitution of p* into

Eq. 1. The line runs through the centered part of the branch,

and the points in nbd(p*) are distributed in a narrow band

around the line, whose distribution is independent of V(0)

(Fig. 12b). These result supports the approximation of

branches by contractive affine transformations obtained in

the previous section correctly capture the functional rela-

tionships between successive responses in the major parts

of respective branches.

The intrinsic slope and the intrinsic intercept at Dt = 30

ms, that is, exp(-30/sm) and A(30; sm, ss, qr, d), are dis-

tributed with a large peak similar to those of the fitting

parameters but in more symmetrical way (Fig. 13a). Sim-

ilarly to the four fitting parameters, initial membrane

potential V(0) possessed small correlation coefficients

with both the intrinsic slope and the intrinsic intercept

(0.10 ± 0.25 and 0.04 ± 0.28 (mean ± SD, n = 15),

respectively). The intrinsic intercept strongly correlated

with qr for each cell. The order of medians for both qr and

the intrinsic intercept for the three input patterns were the

same order as that for response Vlast, and the above order

was strict (p \ 0.05; an example is shown in the right-hand

panel of Fig. 11a). The correlation coefficients between the

intrinsic slope and the intrinsic intercept are distributed

from negative to positive values, depending on the cells,

but are almost independent of input patterns (Fig. 13b).

Statistical model

Based on these analyses of experimental data, we propose a

statistical model for the response sequence of pyramidal

cells in the CA1 network to spatiotemporal inputs given in

the intervals that are assumed to synchronize with typical

gamma waves. The model is given as follows.

VðnÞ ¼ aiðnÞVðn� 1Þ þ biðnÞ; ð2Þ

where (ai(n), bi(n)) is a randomly chosen sample from a

two-dimensional normal distribution that is given by

N2ðð�ai; �biÞ; ðr2
ai
; r2

bi
; raibi

ÞÞ such that P({0 \ ai\ 1}) = 1,
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Fig. 12 Correspondence between the distribution of fitting parame-

ters and the distribution of membrane potentials in (V(0), V(30)).

Typical examples are shown. a Scatter diagrams of (1/sm, qr) and (1/ss,

d) for input pattern 4 in cell 5. The red filled circles in the two diagrams

denote median values p� ¼ ðs�m; s�s ; q�r ; d�Þ in the distribution of the

four fitting parameters. p* determines a typical V(0)-independent time

course. The black filled circles are points in a Mahalanobis ellipsoid

E(p*) centered at the median in (1/sm, 1/ss, qr, d) space. Eðp�Þ ¼ fx 2

ð1=sm; 1=ss; qr; dÞ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðx� ~p�ÞR�1ðx� ~p�Þ

q
� const:g; where ~p� ¼

ð1=s�m; 1=s�s ; q�r ; d�Þ and R is a covariance matrix of the distribution.

The size of the ellipsoid was determined such that the ellipsoid

included 20 percent of whole points. b Scatter diagram of (V(0), V(30))

for input pattern 4 in cell 5. The red line represents a graph of the

function of V(0), V(0) expð�30=s�mÞ þ Að30; p�Þ corresponding to a

typical V(0)-independent time course. The black filled circles denote

points corresponding to a set of typical time courses, i.e. the

neighborhoods of p* nbd(p*), where nbd(p*) = {(V(0), sm, ss, qr,

d); (1/sm, 1/ss, qr, d) [ E(p*)}. A broken line is produced by the use of

major axis regression for whole data points.
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for each kind of input pattern, i. Here ai and bi are not

necessarily independent of each other. The degree of

fluctuation around the line �aiV þ �bi depends on not only

the variances ðr2
ai
; r2

bi
Þ, but also the covariance raibi

. For a

fixed V = V(n - 1), the variance of V0 = V(n) is equiva-

lent to V2r2
ai
þ r2

bi
þ Vraibi

. Thus, if raibi
is negative, and V

becomes larger in the positive region, then the variance of

V0 becomes smaller than in the case that ai and bi are

independent of each other. We see this effect in the upper

branches of cell 1 which has larger amplitudes than those

of other cells (Fig. 4a).

Conclusion and discussion

The response rules for input pattern sequences of the CA1

area in rat hippocampal slices were well approximated by a

set of contractive affine transformations at both the indi-

vidual cell and population levels. These findings strongly

suggest that CA1 dynamics receiving spatiotemporal input

from CA3 has a mode that is characterized by input-driven

IFS consisting of a self-organized response rule for each

spatial input pattern. This dynamics ensures that the dis-

tribution of response is hierarchically clustered according

to input histories, and also ensures that a spatial and ret-

rospective code table can be automatically formed. Hence

we obtain Cantor coding.

In a previous study, we observed such hierarchical

clusters in the distribution of membrane potentials (Fuku-

shima et al. 2007). We also examined the sequences of

responsive membrane potentials in the sub- and supra-

threshold conditions (12 (=6 ? 6) cells). The supra-

threshold condition in the previous study was provided by

weaker stimuli than the supra-threshold condition in the

present study, and the membrane potentials reached near

firing threshold but rarely exceeded such threshold.

Reflecting this type of difference in supra-threshold

dynamics, the return maps showed slightly different fea-

tures in the previous case from those in the present case. In

the return maps for the cells (4/6 cells), the slope of the

major axis regression line for the most upper branches

approached one (1.00 ± 0.07 (mean ± SD), n = 4; the

correlation coefficients were 0.84 ± 0.08 (mean ± SD))

although the findings of the return map analysis in the

present study were also confirmed at more than half of the

cells in the previous study (7/12 cells). In these cells, the

evolutions of membrane potential corresponding to the

most upper branch were slow and their peak time in input

interval (30 ms) were very late (19.6 ± 5.1 ms

(mean ± SD), n = 388, 4/6 cells) compared with the case

of contractive maps (12.5 ± 2.8 ms, (n = 171, 2/6 cells)).

The mechanism of the breakdown of contractive properties

at individual cell level is a subject for future study.

Though the present description regarding the collective

behavior is preliminary since we used a virtual recon-

struction of multi-cell recordings with five cell data sets

obtained from different slices, the much better coding

performance suggests that Cantor coding is in a class of

population coding. In order to enable the spatial code table

with fine hierarchical structure to be formed at population
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Fig. 13 The distribution of intrinsic slope and intrinsic intercept and

their relation to one another. A typical example is shown. a Scatter

diagram and histograms of intrinsic slope and intrinsic intercept for

input pattern 4 in cell 5. The red filled circle is point

expð�30=s�m;Að30; s�m; s
�
s ; q
�
r ; d
�ÞÞ corresponding to a typical V(0)-

independent time course. The black filled circles are points

corresponding to E(p*) in Fig. 12a. b The correlation coefficients

between intrinsic slope and intrinsic intercept for input patterns 2, 3
and 4 in each cell jðj ¼ 1; . . .; 5Þ:
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level, the response of CA1 neurons must be so heteroge-

neous throughout the population as to realize the mutually

exclusive role required for the coding. For a direct verifi-

cation of Cantor coding at population level, the develop-

ment of intracellular multi-cell recording techniques are

necessary. This project is left for future studies.

The important assumption in this study was that CA1

receives spatiotemporal sequences consisting of finite spatial

patterns separated by a period of gamma activity from CA3.

The linkage between gamma oscillations and theta phase

precession provides a clue as to how episodic memories of

place-related events involving sequences of events are rep-

resented in the hippocampus (see, for example, Lisman

2005).

Field potentials with gamma frequencies (30–100 Hz) in

the hippocampus which are most commonly observed

nested within oscillations with theta frequencies (4–10 Hz)

has been suggested to assist in the encoding of memories

(Fell et al. 2001; Sederberg et al. 2003, 2007) and retrieval

of memory traces (Montgomery and Buzsáki 2007). The

CA3-CA1 system is an intrahippocampal gamma genera-

tor, and gamma oscillations in CA1 seem to be entrained

by the output of CA3 (Csicsvari et al. 2003). In place cells

of rat hippocampus, O’Keefe and Recce (1993) discovered

a phenomenon known as theta phase precession, which is a

gradual shift of theta spike timings as the function of

location. Subsequent experimental studies have revealed

that cell assemblies representing different locations are

recruited in different gamma cycles in a theta oscillation

(Dragoi and Buzsáki 2006), and the cells firings are locked

in a preferred phase in a gamma cycle (Senior et al. 2008)

(see review, Lisman and Buzsáaki 2008). On the basis of

these findings, when theta precession happens, it is

expected that the neuronal patterns representing memory

items are successively activated in CA3 synchronized with

the gamma rhythm, and then CA1 receives such spatio-

temporal sequences.
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Appendix 1

Brain slices of six Wister rats (4–5 weeks old) were made

according to the standard procedure reported by Tsukada

et al. (2005). The brain was sliced at an angle of 30–45� to

the long axis of the hippocampus, with a thickness of

300lm. Before recording, slices were kept in bath solutions

(142 NaCl/2 MgSO4/2.6 NaH2PO4/2 CaCl2/26 NaHCO3/10

glucose (mM), bubbled with 95% O2/5% CO2) at room

temperature for at least 60 min.

The slice was then placed in the recording chamber.

Neurons were visualized with an IR-DIC camera

(C2741079H, Hamamatsu, Japan). Recording electrodes

were pulled from borosilicate glass and the resistance was

5–8 MX. Recordings were done at 28–30�C. The internal

solution of the recording electrode was prepared following

the method of Magee (2001), and contained 120 KMeSO4/

20 KCl/10 HEPES/10 EGTA/4 Mg2ATP/0.3 TrisGTP/14

Tris2phosphocreatine/4 NaCl (mM, pH7.25 with KOH).

Whole cell patch-clamp recording was obtained from the

soma of pyramidal cells in CA1 using an electrical

amplifier (CEZ-3100, Nihonkoden, Japan). Signals were

filtered at 10 kHz, sampled at 25 kHz, and stored (micro

1401, CED, England). The starting voltage of the recorded

neurons was between -57 and -44 mV, and the membrane

potential was maintained at a voltage between -67 and

-76 mV by current injection to the soma before electrical

stimulations using two theta glass electrodes (TST-150-6,

WPI, Florida).

Appendix 2

When an order of two or more groups with respect to the

value of a variable is specified by an alternative hypothesis,

the Jonckheere-Terpstra (JT) test (Terpstra 1952; Jonc-

kheere 1954) can be employed instead of the Kruskal-

Wallis test (Sheskin 2004). In this study, we used the JT

test to evaluate whether conditional distributions of

responses of an individual cell to input pattern sequences

with length greater than one were ordered in a self-similar

manner according to the similarity of the input pattern

sequences. Specifically, for each input pattern sequence

with (k - 1) length i1���ik-1, the JT test was applied to a set

of four conditional distributions fGi ¼ ½i1 � � � ik�1i�; i ¼
1; . . .; 4g sharing the common recent history i1���ik-1. The

alternative hypothesis is that the {Gi} have the same order

as the four conditional distributions f½i�; i ¼ 1; . . .; 4g to the

four input patterns. More precisely, if the order of medians

mi of [i] is m1\ ���\ m4 and the median of the distribution

Gi is hi, the alternative hypothesis is h1 B ��� B h4 with at

least one strict inequality. After the JT test, one-sided

comparisons between hi\ hj (i \ j) were conducted using

the Bonferroni-Dunn (BD) multiple comparison test (Dunn

1964; Sheskin 2004). For all tests in this study, the sig-

nificance levels were set at p = 0.05. In the BD multiple

comparison test, this corresponds to the assignment of

statistical significance at p-values 0.05/6 (4C2 = 6) to each

one-sided comparison.
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Appendix 3

To know the mechanism for the emergence of contractive

affine transformations, we describe a continuous time

evolution of somatic membrane potentials with spatio-

temporal inputs. For simplicity, we treated the case in

which the membrane potentials stayed below the firing

threshold. Then, we conducted data-fitting of its time

course during each input interval using the leaky-integrator

neuron model,

smðdV=dtÞ ¼ �V þ Vsyn; ð3Þ

where V [mV] is the somatic membrane potential expressing

deviation from the resting potential, sm [ ms = kX lF] is the

decay time constant of the somatic membrane potential due

to leakage, and Vsyn [mV] is the effect of synaptic input on

the somatic membrane potential. The solution V(Dt) of Eq. 3

in elapsed time Dt from an input time is expressed by the

following formula:

VðDtÞ ¼ Vð0Þ expð�Dt=smÞ þ AðDtÞ; ð4Þ

where V(0) is the somatic membrane potential at input

time, and A(Dt) is the convolution of Vsyn(s) and exp(-s/

sm) from s = 0 to Dt, that is, A(Dt) = sm
-1$0

Dt Vsyn(Dt -s)

exp(-s/sm) ds. The time course of the effect of synaptic

input Vsyn(Dt) was simply given by an a-function (Gerstner

and Kistler 2002):

VsynðDtÞ ¼ qrs
�2
s ðDt � dÞ exp �s�1

s ðDt � dÞ
� �

HðDt � dÞ
ð5Þ

where qr [mV ms = kX lC] is the total change in somatic

membrane potential due to the total effective charge that is

injected in the neuron via its synapses, ss[ms] is the rise

and decay time constant of the a-function, d[ms] is the

transmission delay and H(s) is the Heaviside step function

with H(s) = 1 for s [ 0 and H(s) = 0 otherwise. We

assumed that the term Vsyn represents a collective input-

triggered effect on the somatic membrane potential, which

includes not only excitatory synaptic inputs but also feed-

back and feedforward inhibitory inputs.

For each data set of responses {VDt(n) ; 0 B Dt B 30}

(S(n) = 2, 3 and 4) of cells in the sub-threshold group, we

estimated four parameters (sm, ss, qr, d) in Eqs. 4 and 5,

using nonlinear regression with the least-squares criterion.

However, recording data at an early phase in each input

interval, [0, t0), were omitted for estimation to avoid con-

tamination due to electrical stimulus artifact. The least-

squares minimization was performed using nls package

with a port algorithm of version 2.5.1 of the R software (R

Development Core Team 2007), which iteratively searches

for a solution in a given bounded range from a given initial

condition using information of the functional derivative.

A solution for the four parameters was searched for

from the following intervals: 0.1 \ sm \ 500, 0.1 \ ss

\ min(30, sm), 0.1 \ qr \ 500, 0.1 \ d\ min(10, t0)

and t0 C 6. These search intervals were taken so widely

in order that the solution not saturate so much. For each

data set, twenty initial conditions were prepared. We

accepted a set of convergent values of the parameters as

the solution if its root mean square error was minimum

among all sets of convergent values and was less than

0.15. In almost all data sets, however, the convergent

values of the parameters were not sensitive to the choice

of the initial conditions.
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